SciPy以NumPy为基础,提供了众多数学、科学、工程计算用的模块,包括但不限于:线性代数、常微分方程求解、信号处理、图像处理、稀疏矩阵处理。
本章适合那些有较好高等数学、线性代数、概率论基础的工科学生或从业者阅读。其他读者可以跳过,不影响后续章节。为减轻“数学恐惧症”患者的恐惧,作者尽量选择相对容易的“数学”案例来进行解读。
Codelearn
分享Python,C/C++相关的技术文章, 海洋饼干叔叔@重庆大学
SciPy以NumPy为基础,提供了众多数学、科学、工程计算用的模块,包括但不限于:线性代数、常微分方程求解、信号处理、图像处理、稀疏矩阵处理。
本章适合那些有较好高等数学、线性代数、概率论基础的工科学生或从业者阅读。其他读者可以跳过,不影响后续章节。为减轻“数学恐惧症”患者的恐惧,作者尽量选择相对容易的“数学”案例来进行解读。
本节的阅读需要傅里叶级数及傅里叶变换的相关数学知识。
本小节求解Lorenz微分方程:
在“数学之美”那一章里,为方便读者理解,Lorenz吸引子轨迹的计算采用了比较“原始”的方法。采用integrate模块中的odeint()函数可以更加方便地完成计算。Lorenz吸引子由下述三个微分方程定义:
$$
\frac{dx}{dt}=\sigma(y-x), \quad \frac{dy}{dt}=x(\rho-z)-y,\quad \frac{dz}{dt}=xy-\beta z
$$
本小节求解下述定积分:
$$
\int_{0.7}^4(cos(2πx)e^{-x}+1.2)\mathrm{d}x
$$